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ABSTRACT Predicting biological structure has remained challenging for systems such as disordered proteins that take on
myriad conformations. Hybrid simulation/experiment strategies have been undermined by difficulties in evaluating errors from
computational model inaccuracies and data uncertainties. Building on recent proposals from maximum entropy theory and
nonequilibrium thermodynamics, we address these issues through a Bayesian energy landscape tilting (BELT) scheme for
computing Bayesian hyperensembles over conformational ensembles. BELT uses Markov chain Monte Carlo to directly sample
maximum-entropy conformational ensembles consistent with a set of input experimental observables. To test this framework,
we apply BELT to model trialanine, starting from disagreeing simulations with the force fields ff96, ff99, ff99sbnmr-ildn,
CHARMM27, and OPLS-AA. BELT incorporation of limited chemical shift and 3J measurements gives convergent values of
the peptide’s a, b, and PPII conformational populations in all cases. As a test of predictive power, all five BELT hyperensembles
recover set-aside measurements not used in the fitting and report accurate errors, even when starting from highly inaccurate
simulations. BELT’s principled framework thus enables practical predictions for complex biomolecular systems from discordant
simulations and sparse data.
INTRODUCTION
The past 40 years have seen the experimental determination
of ground-state structures for countless biological macro-
molecules (1). Modern biology, however, presents many
systems that do not fit a single-structure paradigm. Excited
conformational states of nucleic acids (2), natively disor-
dered proteins (3), and protein folding intermediates (4)
are all poorly described by single conformation models.
For such systems, models of conformational ensembles
are required to understand and to predict structural and equi-
librium properties.

A growing body of research has sought to characterize
structural ensembles. Much of this work has focused on
incorporating dynamical information during NMR struc-
ture determination (5,6), or on the extraction of multiple
conformers from x-ray diffraction data (7,8). While these
techniques are powerful, they share difficulties in data
collection, the unified treatment of heterogeneous experi-
mental data, and data sparseness relative to the number
of degrees of freedom. In particular, conformational
ensemble modeling requires the estimation of not just a
single structure, but a collection of structures and their
associated equilibrium populations. This highly underde-
termined problem involves the simultaneous estimation
of ~3 � N � m parameters, where m is the number of
states in the ensemble and N is the number of atoms in
the molecule. Estimating uncertainties of these ensembles
Submitted November 18, 2013, and accepted for publication February 6,

2014.

*Correspondence: pande@stanford.edu or rhiju@stanford.edu

Editor: Kathleen Hall.

� 2014 by the Biophysical Society

0006-3495/14/03/1381/10 $2.00
further amplifies this challenge. Inference in this regime
necessarily requires more information, which in principle
can be attained by combining measurements with simula-
tions that leverage prior physical understanding encoded
in atomistic force fields.

Despite recent advances in force-field development
(9,10), simulation benchmark studies have demonstrated
continuing inaccuracies in molecular-dynamics (MD) force
fields (11). Force-field modifications based on direct fitting
to NMR measurements have also been demonstrated
(12–14), but such work has optimized only a small fraction
of the required force-field parameters. Thus, simulations are
often unable to recapitulate ab initio the wide variety of
measurements available on molecular systems. This inaccu-
racy poses a challenge when one desires atomic-scale
models that are both consistent with available measurements
and predictive of those yet to be measured.

Here, we introduce a practical statistical approach to
modeling solution ensembles of biological macromolecules.
The algorithm, Bayesian energy landscape tilting (BELT),
uses solution experiments to reweight an ensemble of
atomistic models predicted (perhaps inaccurately) by
molecular dynamics (MD). BELT generalizes a recently
proposed maximum entropy method (15) to the practical
scenario in which the experimental measurements and their
estimated relationships to atomic conformation carry error.
In particular, BELT leverages Markov chain Monte Carlo
(16) to transform experimental ambiguity into error bars
on arbitrary structural features. The final output of BELT
modeling is a hyperensemble, or an ensemble of ensembles,
which we show is closely connected to a generalized
http://dx.doi.org/10.1016/j.bpj.2014.02.009
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ensemble theory proposed by Crooks (17). This hyper-
ensemble is a collection of statistical samples, each of which
is itself a conformational ensemble that corresponds to a
maximum-entropy solution associated with a particular set
of experimental observables.

The necessity and utility of this approach can be illus-
trated using a simple example with one experimental
observable. Most previous methods have focused on obtain-
ing estimates of a single best-fit conformational ensemble
(15,18,19,57). However, ambiguous experimental data often
disallow such a point-estimate of the conformational
ensemble. For example, we plot one measured (19) value
of 3J(HNHa) in the context of the Karplus (20) equation
relating f to 3J(HNHa) (Fig. 1 a). The measured coupling
a

b c

d e

FIGURE 1 (a) The Karplus equation connecting the backbone torsion f

to 3J(HNHa). (Shaded gray) Measured value of 3J(HNHa), consistent with

multiple values of f. (b and c) Histograms of four chemically unrealistic

ensembles that recapitulate the measured (gray) value of 3J(HNHa). Each

histogram is represented in both the backbone torsion f (b) and the projec-

tion (via the Karplus equation) onto 3J(HNHa). (c) (Dashed vertical bars)

Average 3J(HNHa) for each corresponding ensemble. (d and e) The MD

(ff99) ensemble (red) is inconsistent with the measured 3J(HNHa). Four

samples (blue) from the BELT hyperensemble show good agreement with

measured values of 3J(HNHa). For this figure only, the uncertainty (s) on
3J(HNHa) was increased 2.5-fold to better illustrate differences. Density

spikes in panels c and e correspond to values where dJ/df / 0. To see

this figure in color, go online.
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corresponds to four different values of f, precluding
description by a single point estimate of f, much less a
single estimate of the distribution of f. Many different
ensembles are consistent with the measurement (Fig. 1, b
and c), leading to nearly completely loss of predictive
power. A molecular-dynamics simulation can establish a
prior estimate for the ensemble (Fig. 1 d, red trace), but
may disagree with the observed data beyond measurement
error (Fig. 1 e, red trace and red dashes). In this case, how
to compute a statistical collection of ensembles that lever-
ages both the simulation and the data has not been obvious;
for example, prior Bayesian approaches return uncertainties
assuming single conformations, not full ensembles (21). The
BELTapproach described herein (blue traces in Fig. 1, d and
e) offers a practical recipe for describing such a hyperen-
semble, for computing the hyperensemble’s predictions for
new experimental observables not used in the modeling,
and for giving rigorous error estimates on these predictions.

After laying out the theoretical framework for BELT, this
study presents in-depth tests based on assessing the con-
vergence of ensembles constructed from force fields with
radically different properties. We investigated the confor-
mational propensities of trialanine using NMR measure-
ments (19) and MD simulations performed in five
different force fields. The small size of this model system
enabled assessment of BELT without complications from
incomplete sampling. At the same time, trialanine populates
multiple conformational states and allows incisive tests of
ensemble modeling. Although the raw simulations show
wide variations in their conformational preferences, BELT
corrects force-field errors to provide concordant estimates
of the a, b, and PPII populations. The ability to correct
the biases of diverse force fields provides a stringent test
of the proposed calculation scheme for connecting simula-
tion and equilibrium measurements.
THEORY: BAYESIAN ENERGY LANDSCAPE
TILTING

Model inputs

To model an ensemble using BELT requires three
components:

1. We need conformations xj (j ¼ 1, ., m) sampled from
the equilibrium distribution of some physically realistic
model. This model will serve as a prior on structural
properties; in the absence of experimental data, the
BELT model inherits the properties of the conformations
xj. In this article, such conformations will be generated
from MD simulations.

2. We require equilibrium experimental measurements Fi
(i ¼ 1, ., n) and their associated uncertainties si (i ¼
1, ., n).

3. It is necessary to have a direct connection between simu-
lation and experiment. This connection is achieved by
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predicting each experimental observable at each confor-
mation: fi(xj) is the predicted value of experiment i at
conformation xj.
Reweighting

The next step in constructing an ensemble is to calculate the
population of each conformation. Inspired by a previous
method for restraining simulations (15) (see Appendix S1
in the Supporting Material), we reweight individual confor-
mations with a biasing potential that is a linear combination
of the predicted observables:

DUðx;aÞ ¼
Xn

i¼ 1

aifiðxÞ:

In DU(x; a), the parameters ai determine how strongly each
experiment contributes to the biasing potential. As shown
previously in Pitera and Chodera (15), such a linear biasing
potential gives a maximum entropy ensemble for some set
of experimental observations. The BELT strategy is to
look beyond the single best such ensemble so as to estimate
the uncertainty in the ensemble modeling. BELT instead
samples over a distribution of such maximum entropy
ensembles, each parameterized by ai. This approach is con-
nected (see Appendix S1 in the Supporting Material) to
work by Crooks (2007) that proposed an entropic prior for
modeling hyperensembles in general physical problems.

The end result is a collection of landscape-tilted ensem-
bles (Fig. 1 e). That is, each conformational ensemble is a
perturbed version of the initial MD ensemble but reweighted
(see Appendix S2 in the Supporting Material) according to
energetic perturbations that are linear in the experimental
observables fi(x):

pjðaÞ ¼ 1P
kexp½ � DUðxk;aÞ� exp

�� DU
�
xj;a

��
:

With the equilibrium populations, we can calculate the
equilibrium expectations of an arbitrary observable h(x):

hhðxÞia ¼
X
j

h
�
xj
�
pjðaÞ:

In the above bracket notation, hh(x)ia is the ensemble
average of h(x) in an ensemble that is perturbed by a biasing
potential DU(x; a). At this point, the determination of the
parameters ai has not yet been discussed. The key idea,
however, is that the a reweighted ensemble hia should reca-
pitulate the experimental measurements:

hfiðxÞiazFi:

Forcing this to be an exact equality recovers previous results
(15) that can be derived from maximum entropy consider-
ations (see Appendix S1 in the Supporting Material); here,
however, we take into account the experimental uncer-
tainties associated with each Fi.
Determining a

A Bayesian framework enables determination of the coeffi-
cients a used in the biasing potential. An alternative deriva-
tion using the Crooks (17) hyperensemble formalism is
given in Appendix S1 in the Supporting Material. BELT
assumes that, given the correct choice of a, the predicted
observables fi(x) provide unbiased (but noisy) predictions
of the measurements Fi. This recipe assumes independence
(see Appendix S3 in the Supporting Material) and the
following conditional probabilities:

PðFijaÞ � N
�hfiðxÞia; s2

i

�
:

In the above equation, N(.,.) refers to a normal distribution
with specified mean and variance. For this work, we model
si as the uncertainty associated with predicting chemical
shifts and scalar couplings from structures; this error is
quantified by the root-mean-square (RMS) uncertainty
estimated during the parameterization of chemical shift
and scalar coupling models. Using Bayes’ theorem, we
can calculate the posterior distribution of a:

PðajF1;.;FnÞfPðF1;.;FnjaÞPðaÞ:

Now we let LP(a) denote the log posterior of a and simplify,
dropping terms that are independent of a:

LPðaÞ ¼ log½PðajF1;.;FnÞ�

¼ �
Xn

i

1

2s2
i

�hfiðxÞia � Fi

�2 þ log PðaÞþ constant:

Note the simple form of the log posterior. The first term (i.e.,
2
the log likelihood) measures the c agreement between

the reweighted ensemble and measurements. The second
term is the log of the prior distribution on a.

In this article, we evaluate three different choices of prior
(see Appendix S4 in the Supporting Material), finding
similar results for each, as follows.

Maximum entropy prior: choice 1

The first prior is the maximum entropy (maxent) prior,
which penalizes ensembles as they deviate from the raw
simulation results:

logPðaÞ ¼ �l
Xm
j

pjðaÞlogpjðaÞ
p0
j

:

In the previous expression, pj
0 refers to the populations of
an unweighted ensemble, which are typically 1/m, whereas
l is a hyperparameter that controls the strength of the prior.
Biophysical Journal 106(6) 1381–1390
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Dirichlet prior: choice 2

We also consider using a Dirichlet prior, which is function-
ally similar to the maxent prior (see Appendix S4 in the
Supporting Material):

log PðaÞ ¼ �l
X
j

p0
j log

p0
j

pjðaÞ:

Multivariate normal prior: choice 3

The third prior we consider is a multivariate normal (MVN)
prior, where a ~ N(0,S). The value of S is given by Sij ¼
lCov(fi(x), fj(x)), as derived in Appendix S4 in the Support-
ing Material.

Each of these priors can be used to achieve regularization,
which is a powerful technique to reduce overfitting (22).
Large values of l favor the raw simulation results (i.e.,
uniform conformational populations): pj z pj

0 ¼ 1/m.
The value of l can be chosen via cross-validation or other
methods (see Appendix S5 in the Supporting Material).
When using the maxent prior in the limit of large l and
s / 0, BELT recovers the hyperensemble picture of
nonequilibrium statistical mechanics as developed by
Crooks (17) (and see also Appendix S1 in the Supporting
Material). The Dirichlet and MVN priors do not share the
same connection to the Crooks hyperensemble formalism;
however, for normally distributed observables, all three
priors will give identical results (23).
MCMC sampling of structural ensembles

As noted above, because ensemble inference often presents
many plausible solutions (21,24,25), we avoid statistical
methods that return a single solution (e.g., maximum likeli-
hood or maximum entropy). We therefore use Markov chain
Monte Carlo (MCMC), as implemented in the software
PYMC (16), to sample the distribution of structural ensem-
bles—one ensemble per sampled a—consistent with exper-
iment. The result is an ensemble of ensembles—a statistical
ensemble of conformational ensembles. Averaging all
MCMC samples provides posterior mean estimates of
arbitrary structural features or experimental observables.
Similarly, examining the MCMC variances provides statisti-
cal uncertainties of equilibrium or structural features. A
Bayesian bootstrapping procedure (26) can also be used to
model the statistical uncertainty of the MD simulations
(see Appendix S6 in the Supporting Material).
METHODS

MD simulations

Trialanine was simulated in the ff96 (27), ff99 (28), ff99sbnmr-ildn (29,30),

CHARMM27 (31,32), and OPLS-AA (33) force fields, as previously

reported in Beauchamp et al. (11). Simulations were performed using the

software GROMACS 4.5 (34) and run at constant temperature (300 K)
Biophysical Journal 106(6) 1381–1390
and pressure (1.01 atm). Each simulation was at least 225 ns long

and used the TIP4P-EW water model (35). Conformations were stored

every 1 ps.
Chemical shifts and scalar couplings

All NMR measurements in this work refer to experiments probing the cen-

tral residue of trialanine (19). The experimental data were measured at

pH 2, near the pKa of the carboxylate moiety of the C-terminus, which

requires a constant pH simulation rather than a fixed protonation state.

Because such simulations are challenging with today’s force fields and

simulation packages, we simulated the trialanine construct with charged

termini—conditions in which the force fields have been best calibrated

and tested. We therefore focus our analysis on the central alanine residue,

which should be most robust to pH-dependent effects. Both pH differences

and force-field inaccuracies will lead to systematic differences between

simulation and experiment; indeed, we assess whether BELT robustly cor-

rects these deviations.

Chemical shifts (H, Ha, Ca, Cb) for each frame were calculated using a

weighted average of SHIFTX2 (36), SPARTAþ (37), and PPM (38) predic-

tions; uncertainties for each model were estimated using their reported

RMS prediction errors. Overall uncertainties were estimated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
wis

2
i

q
;

where wi f 1/si
2 is the weight (Swi ¼ 1) of each chemical shift model and

si is the uncertainty of each chemical shift model. The J-couplings were

calculated using the following Karplus relations: 3J(HNC
0
) (20), 3J(HNHa)

(20), 2J(NCa) (19), 3J(HaC0) (39), 1J(NCa) (19), and 3J(HNCb) (20).

J-coupling uncertainties were approximated as the RMS errors reported

when fitting the Karplus coefficients.

We have divided the available experimental measurements into training

and test sets, with the training set consisting of the 3J(HNC
0
), 2J(NCa), and

3J(HNCb) scalar couplings and the Ca, HN, and Cb chemical shifts. The test

set consists of 3J(HNHa), 3J(HaC0), 1J(NCa), and the Ha chemical shift. The

division into training and test sets serves three purposes:

1. It provides a test of overfitting.

2. It allows us to reduce the computational cost of BELT calculations.

3. It allows us to train on data that are approximately uncorrelated (BELT is

best suited for working with uncorrelated data).
BELT

All BELT calculations were performed using the FitEnsemble

software package (https://github.com/kyleabeauchamp/FitEnsemble). The

online FitEnsemble tutorial demonstrates the use of BELT with a

single experimental measurement (3J(HNHa)). Source code for calculations

in this work is freely available at https://github.com/kyleabeauchamp/

EnsemblePaper.

The regularization strength l weights simulation versus experimental

data. To determine this weighting in an unbiased manner, BELT carries

out cross validation on the simulation data, as described in Appendix S5

in the Supporting Material; this procedure also reduces errors due to finite

sampling of equilibrium properties. For each model, we used the software

PYMC to sample at least 5,000,000 values of a; sampled values of a were

thinned 100-fold to reduce correlation. The first 5000 samples (before thin-

ning) were discarded as burn-in. Convergence of MCMC sampling was

assessed by visual examination of MCMC traces; a well-sampled and

thinned trace will appear to be white noise, without correlation between

one sample and the next. MCMC traces are shown in Fig. S2 in the Support-

ing Material and discussed in Appendix S7 in the Supporting Material. To

incorporate simulation uncertainty, we used Bayesian bootstrapping (see

https://github.com/kyleabeauchamp/FitEnsemble
https://github.com/kyleabeauchamp/EnsemblePaper
https://github.com/kyleabeauchamp/EnsemblePaper
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Appendix S6 in the Supporting Material). Two Bayesian bootstrap repli-

cates were performed.
RESULTS

Short peptides provide crucial tests for evaluating and opti-
mizing MD force fields (9,11,14,19,40). Such peptides offer
a window into the intrinsic conformational propensities of
amino acids, free from the secondary structure bias found
in statistical surveys of protein structures (41). To test the
proposed theoretical framework, we used BELT to infer
the conformational populations of trialanine from chemical
shift and scalar coupling measurements (19).
Conformational propensities of trialanine
simulations

Trialanine was simulated (see Methods) in five different
force fields. The chosen force fields show considerable vari-
ation in their predicted conformational propensities. The
ff96 force field shows a bias toward b conformations (pop-
ulation: 51%) (Fig. 2 b, red). On the other hand, ff99
strongly favors helical conformations, with a predicted a

population of 80% (Fig. 2 c, red). The PPII state, known
to be the dominant state in solution from independent
approaches (19,40,42), is the dominant simulated state
only in the ff99sbnmr-ildn force field (Fig. 2 a, red). Low
PPII populations and inconsistency between force fields
have been previously noted (9,11,14,19).
a

b c
Agreement with NMR measurements: MD and
BELT ensembles

Given the differences in conformational propensities, one
might expect varying degrees of agreement with the
available experimental measurements. This is indeed
the case; four out of five force fields show values of
the reduced c2 (c2/n) > 1.0 (Fig. 3 a, red). Because of
this considerable error, we therefore examined
BELT hyperensembles based on incorporating six NMR
measurements of chemicals shifts (Ca, Cb, and H) and
scalar couplings (3J(HNC

0
), 2J(NCa), and 3J(HNCb)) to

reweight each of the five MD ensembles. As expected,
the BELT hyperensembles accurately recapitulate these
six measurements used in the reweighting (Fig. 3 a). In
a more incisive test, the BELT hyperensembles accurately
predicted four measurements (Ha chemical shift, and
3J(HNHa), 3J(HaC0), and 1J(NCa) scalar couplings) that
were not used to fit the models. (Fig. 3 b). A table of pre-
dicted and observed NMR measurements is given in
Table 1; see also Table S1 and Table S2 in the Supporting
Material.
Converged conformational propensities
observed in BELT ensembles

Although the raw MD simulations predicted quite different
conformational propensities, BELT reweighting gave five
ensembles with conformational populations that agreed
FIGURE 2 MD and BELT (maxent, Dirichlet,

and multivariate normal (MVN) priors) confor-

mational propensities (for central alanine residue)

in each force field. To see this figure in color,

go online.
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FIGURE 3 The reduced c2 error (e.g., c2/n) for

MDandBELT (maxent, Dirichlet, andMVNpriors)

models. The BELT reduced c2 is estimated as the

mean reduced c2 over all MCMC samples. (a)

Calculated with the six measurements used to fit

the BELTmodel. (b) Calculated with four measure-

ments not used to fit the BELTmodel. See Methods

for the definition of training and test sets. Note that

the training and test sets are not fully independent

because allmeasurements probe the (f,j) backbone

torsions. To see this figure in color, go online.
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to within estimated statistical uncertainties (Fig. 2). Quan-
titative predictions and uncertainties are given in Table
S3, Table S4, Table S5, and Table S6. In accord with expec-
tation, the lower accuracy force fields (e.g., ff99) were as-
signed lower l-values than force fields that were able to
predict the experimental data a priori (see the Supporting
Material). The lower accuracy simulations also give final
predictions that were more uncertain (e.g., PPII frequency
of 69 5 13% for ff99) than force fields that are able to
predict experimental data a priori (e.g., PPII frequency of
71 5 4% for ff99sbnmr-ildn). Nevertheless, the final pre-
dictions agreed, and residual modest differences provided
practical estimates of systematic error. In general, we find
(PPII, b, a) populations of (67 5 9%, 23 5 6%, 10 5
8%); here the mean and uncertainty are approximated as
the mean and standard deviation across all force fields
and priors.

In addition to convergence between models con-
structed from different force fields, we also assessed
the convergence between BELT models built using
different priors on the parameters a. In general, different
priors gave similar results with small quantitative
differences (Figs. 2 and 3). Building BELT models
with different priors could therefore be further useful for
TABLE 1 Predicted and measured observables

Observables Fi si

ff96 ff99

MD BELT MD BEL

Ca 52.4 0.9 52.1 52.2 52.8 52.

Cb 19.2 1.0 20.0 19.8 18.0 18.

H 8.6 0.5 8.6 8.6 8.3 8.4

Ha 4.4 0.2 4.6 4.6 4.6 4.6
1J(NCa) 11.3 0.5 11.3 11.5 10.4 11.
3J(HaC0) 1.8 0.4 2.0 1.7 2.2 1.7
3J(HNCb) 2.4 0.2 1.5 2.3 0.8 2.3
3J(HNC

0
) 1.1 0.3 1.5 1.2 1.8 1.2

3J(HNHa) 5.7 0.4 6.6 5.7 7.5 5.6
2J(NCa) 8.4 0.5 8.5 8.6 6.4 8.5

c2 (all) 2.5 0.6 10.8 1.0

c2 (train) 2.9 0.4 12.9 0.6

c2 (test) 2.0 0.9 7.6 1.6

BELT predictions are calculated using the maxent prior; see Table S1, Table S

Material for complete tables. The all, training, and test datasets have 10, 6, and
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bracketing uncertainties in situations with limited simula-
tion data.
The resolution limit of trialanine BELT ensembles

Despite the near-quantitative agreement in a, b, and PPII

populations (Fig. 2) and overall Ramachandran features
(Fig. 4), the fine details of the Ramachandran plots differed
among the five models. Because all five BELT ensembles
showed excellent agreement with experiment (Fig. 3), we
concluded that six chemical shifts and scalar couplings
were insufficiently informative to resolve (and falsify)
subtle force-field differences. The most obvious such dif-
ference was the width, shape, and orientation of the PPII

basin. Most strikingly, ff96 and OPLS-AA gave PPII basins
that were vertically oriented in the Ramachandran plot,
whereas ff99, ff99sbnmr-ildn, and CHARMM27 gave
diagonally oriented PPII basins. Two different effects
contributed to this resolution limit: the information content
in the experimental measurement and the uncertainty in
predictors of experimental observables. Again, the BELT
strategy of modeling with different starting MD simulations
revealed the residual uncertainties from these systematic
errors.
ff99sbnmr-ildn CHARMM27 OPLS-AA

T MD BELT MD BELT MD BELT

5 52.4 52.4 52.5 52.4 52.2 52.2

8 18.3 18.4 18.2 18.6 19.6 19.6

8.2 8.2 8.3 8.3 8.6 8.6

4.5 4.5 4.6 4.6 4.6 4.6

8 11.5 11.5 11.2 11.7 11.1 11.3

1.8 1.8 2.0 1.8 2.2 2.0

2.3 2.3 1.8 2.3 1.9 2.2

1.0 1.0 1.4 1.2 0.9 0.8

6.1 6.0 6.3 5.7 7.0 6.5

8.5 8.5 8.1 8.6 8.1 8.4

0.4 0.4 1.4 0.7 2.3 1.1

0.3 0.3 1.6 0.5 1.1 0.5

0.5 0.5 1.1 1.0 4.0 1.9

2, Table S3, Table S4, Table S5, Table S6, and Table S7 in the Supporting

4 measurements, respectively.



FIGURE 4 Ramachandran plots illustrate discordance of raw MD en-

sembles (left) and final agreement of BELT (maxent prior) ensembles

(right) over the five tested force fields. Results from alternative BELT priors
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DISCUSSION

Structural ensemble biology

Why model structural ensembles, rather than just structures?
At least three compelling reasons favor ensembles:

1. Biological molecules are multistate machines that fold,
unfold, bind ligands, aggregate, and change conforma-
tion. Biology is controlled by the relative populations
of these states. Ensembles capture aspects of these phe-
nomena by encoding equilibrium populations with struc-
tures.

2. Most solution experiments measure ensemble average
equilibrium properties: chemical shifts, scalar couplings,
nuclear Overhauser effects, small-angle x-ray scattering,
and Förster resonance energy transfer can often be
approximated as equilibrium properties. A truly quantita-
tive connection to these measurements requires modeling
the equilibrium ensemble.

3. Recent advances in atomistic simulation (34,43–45),
special-purpose hardware (46), and distributed com-
puting analysis (47,48) have enabled atomistic simula-
tions to reach the millisecond timescale (49–52); the
computational cost of ensemble modeling is quickly
becoming manageable.

One might argue that structural ensembles are unneces-
sary because many proteins occupy a single state under
physiological conditions. For such proteins, it is probably
safe to enforce single-state behavior, as is assumed in
contemporary modeling approaches. However, we suggest
that the number of states be inferred—not assumed.
Comparison to previous ensemble methods

Previous ensemble modeling efforts that are most similar to
BELT share three key ingredients: state decomposition; a c2

objective function; and population inference on the clusters.
For example, this general recipe describes the approach used
in previous analyses of homopeptides (19), the EROS tech-
nique for SAXS modeling (18), and the Bayesian weighting
(BW) formalism (24,53). Note that of these three techniques,
only BWgoes beyond returning a single best-fit ensemble and
instead characterizes the posterior distribution via MCMC;
below, we therefore focus our attention on BW, because it is
most directly comparable to BELT in scope and purpose.

The primary disadvantage of previous techniques is the
need for a state decomposition, which must be defined either
by hand or by clustering. Working with a given state decom-
position can introduce two different errors, depending on the
number and quality of states: In the limit of few states,
are shown in Fig. S1 in the Supporting Material. The jagged appearance of

the ff99 BELT model is due to limited sampling of PPII configurations in

that force field. To see this figure in color, go online.
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clustering can overly coarsen the system of interest, prevent-
ing the model from reproducing multiple experimental
observables. At the other extreme, having too many states
leads to a large number of parameters to be estimated.
This will lead to poor generalization performance and large
errors when predicting experiments not used to train the
model, as well as reliance on a subjective choice of how
many states is appropriate. One symptom of this regime is
discontinuity in conformational populations. For example,
imagine two nearby conformations at the boundary between
two BW states—one conformation on each side of the
boundary. In BW, the populations of each conformation
could fluctuate dramatically with the corresponding state
populations. In BELT, however, the two conformations
will have nearly identical populations if the predicted
observables vary smoothly.

BELTavoids arbitrary state decompositions by projecting
simulations onto a basis defined only by the information at
hand: the unweighted simulation, and the function that maps
ensembles onto observables. The advantages of working on
this basis are threefold:

1. In BELT, one estimates a single parameter (ai) for each
experimental observable. If the number of experiments
is small, as is often the case, the inference problem
involves only a few parameters.

2. The predicted observables are a natural basis for bio-
physical calculations, in that the predicted observables
are the fundamental connection between simulation
and experiment. Working on this basis allows direct
connection to experiment and often provides insight
into the molecular interactions driving biophysical
phenomena. For example, the projection onto ob-
servables could be used to rationally infer force-field
parameters—essentially a Bayesian version of the
ForceBalance method (54,55).

3. BELT does not require subjective choices. In the limit of
exact measurements, BELT reduces to a previous (15)
maximum entropy approach, and, more generally, is con-
nected to the Crooks (17) hyperensemble formalism (see
Appendix S1 in the Supporting Material).

We also point out some surprising differences between
BELT and BW-like methods. BW-like methods have the
property that the in-state means of features are preserved,
leading to an undesirable dependence on the choice of state
decomposition. More precisely, suppose that cs(x) is the
indicator function of a conformational state s. Then in-state
averages of the form hcs(x)i�1 hh(x)cs(x)i do not depend on
the reweighted populations. BELT, however, does not pre-
serve the in-state averages; in fact, this property is the direct
result of BELT’s connection to maximum entropy modeling
(see Appendix S1 in the Supporting Material and Pitera
and Chodera (15)). The effect of this property is that the
peaks of reweighted histograms are slightly shifted relative
to the raw MD results, as observed in Fig. S4. We conclude
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that BW-like methods are useful for systems with few, well-
defined conformational states, whereas BELT may offer
significant advantages in the absence of an obvious state
decomposition.

In addition to BW-like methods, there are also a class of
methods where restrained simulations are used to derive
ensembles of hundreds of conformations that, when taken
together, produce the correct ensemble average observables
(5,56). Through the use of restraints, such methods have
advantages in situations where the initial force field is insuf-
ficiently accurate to sample the correct regions of con-
formation space. Unlike BELT, however, these methods do
not yet give a statistical treatment of uncertainty from errors
in experiments or connecting simulations to experiments;
new predictions are thus difficult to falsify or validate in
subsequent experiments.
Comparison to a previous trialanine study

Our results are in qualitative, but not quantitative, agreement
with a previous study of trialanine (19) using the same
experimental measurements. That study suggested a PPII

population as high as 92 5 5%, somewhat higher than
our 67 5 9%, and with a twofold-lower estimated uncer-
tainty. The difference can be attributed to three methodolog-
ical differences:

1. The previous study used likelihood maximization to
directly fit the (PPII, b, and a) populations from a
three-state decomposition of their simulations. The use
of likelihood maximization may give misleading results
when the likelihood surface is broad and shallowly
peaked, as was found in the previous study. However,
this does not appear to be the primary cause of disagree-
ment, because maximization of the BELT likelihood
recovers populations within 55% of the values obtained
via MCMC sampling.

2. The previous study assumed each scalar coupling to have
an uncertainty of 1, while we approximate the uncer-
tainties as the RMS errors determined when fitting
the Karplus equations. This weights the measurements
differently and will lead to quantitative differences in
estimated populations. Different choices of Karplus
coefficients also may lead to different predicted pro-
perties, as has been discussed elsewhere (9,58).

3. The prior method’s choice of state decomposition may
cause slight differences in estimated conformational
populations.
Performance and extension to larger systems

The computational performance of BELT depends on
several factors:

1. The cost is proportional to the number of requested
MCMC samples (nsamples). The required number of
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samples must be determined by convergence analysis of
the resulting MCMC traces.

2. Each step of MCMC sampling requires calculations
involving each member of the m conformations in the
ensemble; m is the second major determinant of compu-
tational cost.

3. Each step of MCMC sampling involves drawing one
random variable for each of the n experimental measure-
ments, so the cost of each MCMC step depends (albeit
weakly) on n.

For this article (m ¼ 3 � 105, n ¼ 6, nsamples ¼ 107), each
BELT run required ~2 days of computing time on an Intel
3770K processor (Intel, Santa Clara, CA). A similar calcu-
lation with only a single experimental observable (n ¼ 1)
would take ~1.8 days. For a larger system, say ubiquitin
with one measurement per residue, one might work with
fewer conformations to reduce the computational cost. As
an example of the computational cost, a calculation with
(m ¼ 5 � 104, n ¼ 76, nsamples ¼ 107) would require ~1 day.

Because this analysis has focused on the analysis of a
small peptide, we briefly discuss two possible challenges
in applying BELT to larger protein systems:

1. The computational cost of MD simulations, using avail-
able methods, prevents converged equilibrium simula-
tions of full protein systems; this was one motivation
for our choice of trialanine as a model system.

2. Inaccurate force fields may reduce the overlap between
the true ensemble and that sampled in simulation.

Given a finite simulation length, it is possible that no
amount of reweighting could provide agreement with exper-
iment. Force-field inaccuracy may become increasingly
important for larger protein systems (59).
CONCLUSION

Bayesian energy landscape tilting (BELT) allows the simul-
taneous characterization of structural and equilibrium prop-
erties by generating a Bayesian ensemble of conformational
ensembles—a hyperensemble. Through its use of MCMC,
BELT is robust to ambiguous experiments and provides
rigorous uncertainty estimates, as illustrated here in the
case of a tripeptide system with a complex ensemble.
BELT models constructed with a handful of NMR mea-
surements correct significant force-field bias, provide gener-
alizable, force-field-independent trialanine ensembles, and
allow evaluation of residual systematic errors. Important
frontiers for BELT include the integration of numerous
rather than sparse data and extension of the presented
equilibrium framework to prediction of kinetic properties.
The principled combination of simulation and experi-
ment—and evaluation of convergence from multiple force
fields—will enable predictive models that might not be
achievable using either simulation or experiment alone.
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